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The definition of Lyapunov exponents over a finite time interval is reviewed. It is shown that
a bounded, invertible coordinate transformation exists on the tangent space which diagonalizes the
uncontrolled system, thus introducing modal variables for the system. An algorithm is given which
allows a Lyapunov exponent to be deterministically changed to any other real value (at least over
a finite trajectory arc), while leaving all other Lyapunov exponents unchanged. This cannot be
done in general with a constant gain, but can be done if the gain is a function of time. Iteration of
this algorithm allows for alteration of any subset of the Lyapunov exponent spectrum. A numerical

example based on the Lorenz system is given.

PACS number(s): 05.45.+b

I. INTRODUCTION

Recently there has been a great interest in control of
chaotic trajectories. There are three main directions to
this work. Much of this work follows the suggestion by
Ott, Grebogi, and Yorke [1] that the parameters of a
system can be used for controlling the evolution of the
trajectory. An excellent recent review is given by Shin-
brot, Grebogi, Ott, and Yorke [2]. Controlling the system
to a set of goal dynamics was pioneered by Liischer and
Hiibler [3], among others. Finally, application of feed-
back control to chaotic problems is still in its infancy.
Pyragas [4] has applied feedback control with gains deter-
mined through numerical experiments, while Romeiras et
al. [5] have applied feedback control on a surface of sec-
tion, where the well-known constant coefficient control
methods are applicable. Usually these efforts stabilize
one of the unstable periodic orbits embedded within a
chaotic attractor, so the control problem becomes one of
stabilizing an unstable periodic orbit. We note that the
problem of control of unstable periodic orbits was solved
using linear quadratic regulators by Breakwell, Kamel,
and Ratner [6], and the pole placement problem for pe-
riodic orbits was solved by Calico and Wiesel [7].

Situations exist where it is desired to use a chaotic
trajectory, not a periodic orbit, and system parameter
control is not applicable. For example, many interplane-
tary probes utilize chaotic, multiflyby trajectories which
are very sensitive to their initial conditions, yet these tra-
jectories are almost totally insensitive to the changes in
system parameters (planetary masses and orbits) which
are within the reach of human engineers. Rather, these
orbits are controlled by maneuvering the spacecraft, us-
ing the sensitivity of the chaotic trajectory to greatly
amplify the effects of a small velocity change, as far into
the future as can be deterministically predicted. Also,
usually these spacecraft are launched into the correct
trajectory, as closely as possible, so producing dramatic
shifts between trajectories is not required. The other,
and perhaps more common, approach to control is feed-
back control, in which the scientist or engineer has direct
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(although perhaps limited) ability to change the system
equations of motion. The control terms usually appear
as additive functions in the equations of motion, whose
character must be chosen to stabilize the desired trajec-
tory. It is feedback control of chaotic systems through the
system equations of motion that is the subject of this pa-
per. In many ways this paper is similar in approach to
Calico and Wiesel [7], whose authors gave the first modal
feedback algorithms for time-periodic control problems.
We differ from Pyragas [4] in that we will attempt to di-
rectly alter the Lyapunov exponents of the trajectory by
predetermined amounts. We differ from Romeiras et al.
[5] in that we will apply control throughout the trajec-
tory.

A general dynamical system can be written as a vector
set of differential equations

X = f(X,1), (1)

where X is termed the state vector. Introduce the small
displacement x(t) = X(t) — Xo(¢) from a known trajec-
tory Xo(t). Then, to first order in small quantities, the
displacement vector obeys the variational equations

. of
x=A(t)x = X . X. (2)

As a set of linear equations, the variational equations
are formally solved by the fundamental matrix ®(¢,to),
which obeys

d = A(t)®, ®(to,to) =1I. (3)

Then, the general solution to (2) can be written as x(t) =
B(t,to)x(to)-

II. REGIONAL LYAPUNOV EXPONENTS

The stability of a general trajectory of a linear system
is determined by the Lyapunov exponents. These are the
values
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extremalized over all initial displacements e;(¢o). Usu-
ally, the above includes a limit as t; — oo, but in this
work we are interested in finite times. This restriction
to finite time intervals is an absolute necessity, since the
idea of control implies that the future can be predicted so
that action can be taken to influence its outcome. This
is only possible with chaotic trajectories for a finite time
interval.

The vectors e;(tp) represent extrema in the growth
rate of the norm of displacement vectors, |x(tf)| with
respect to the initial displacement x(to). This cannot be
an unconstrained maximization, since using an initial dis-
placement x(to) with a larger magnitude will, of course,
increase the final result. So, constrain |x(¢o)| to be unity.
We then have the constrained optimization problem

J = Ix(t)* - (Ix(t)* - 1), (5)

which must be extremalized with respect to the compo-
nents of x(¢o). In the above, yu is a Lagrange multiplier.
Now, since x(ty) = ®(ts,%0)x(to), the scalar function (5)
becomes

2
J=Z ZQ,‘]‘:L'OJ' —p.{z:.’l:(zh-—l} (6)

in terms of the components zy; of the initial displacement
vector. Partial derivatives can now be calculated as if all
components were independent, yielding

(4)

1

5 6:1:0;,

i

1 0J
=0= Z <I>,-j(I>,-kzoj — HiZok, (7)
J

where k =1,2,...,N.

The solutions to (7) with unit magnitude are the de-
sired e = x(to) vectors at time to. But (7) can be recog-
nized as the component form of

{@T(I’ - p,,'I} €e; (to) =0. (8)

That is, the e;(to) are the real, orthogonal eigenvectors
of the real symmetric matrix $7®. Comparison to (4)
shows that the Lyapunov exponents over the time inter-
val (to, ty) are just

ni = exp{2Xi(ty —to)}. 9)

This has been recognized by Goldhirsch, Sulem, and
Orszag [8]. In the limiting case where 8t = t; — ¢y be-
comes small, the fundamental matrix becomes ®(¢, o) =~
I+ Aét . Using this in (8) gives

{(A+AT) 6t — (ui —1)I}e; =0. (10)

This is the short term limit for the local extremal expan-
sion and/or contraction directions. Expanding (9) for
small 6t gives p; — 1 = 2);6t, so locally the Lyapunov
exponents become the eigenvalues of (4 + AT)/2. In the
long term limit as ¢ — oo, we obtain the Lyapunov ex-

ponents of the chaotic trajectory. However, in this work
we will focus on intermediate times. Since we are not in-
terested in either the infinitesimal limit, leading to local
Lyapunov exponents, nor the infinite time limit, leading
to the classical Lyapunov exponents, we will refer to our
A; as regional Lyapunov exponents, over the finite time
interval (to, tf).

III. LOCAL DECOUPLING

Over a finite arc of the trajectory, the regional Lya-
punov exponents may be used to factor the dynamics
into separate modes. The initial conditions e;(¢y) in-
troduce N special solutions to the variational equations,
x;i(t) = ®(t,t0)ei(to), on which the average exponential
rate of expansion or contraction is an extremum. But lo-
cal variations in these rates can be quite large; see Haubs
and Haken [9], Nese [10], Sepiilveda, Badii, and Pollak
[11]. We wish to use these N special solutions to the
variational equations as basis vectors for the entire solu-
tion set, and it would be very inconvenient for them to
be anything other than unit vectors. Their instantaneous
rate of change of magnitude is given by

== (11)

Since the regional Lyapunov exponents are the average of
these instantaneous rates on these N extremal solutions,
we have

1 ts
i = / oi(r)dr. (12)
ty —to

to
Then, define N new functions e;(t) as the solutions to
é,’(t) = Ae; — ai(t)e,- (13)

with initial conditions e;(to) on the interval (to,ts). Since
the particular solution to the variational equations x; =
®e;(to) grows exponentially at the average rate of \; over
the interval (o, tf), we note that the scaled solution e;(t)
above does not grow exponentially over the defining time
interval, either instantaneously or in the average. By
construction, the e; vectors are orthonormal at t = t,.
They are, by (13), trivially unit vectors on the entire
interval to <t < ty. That they must also be orthogonal
at t = ty can be seen by realizing that e;(¢;) must also be
the extremal initial conditions for exponential growth of
trajectories running backwards in time. So they are the
eigenvectors of the symmetric matrix (®~!)7(®-!), and
are orthogonal. But at other times in the interval (o, ty)

the e;(t) vectors may not be orthogonal. We note that
since the new vectors remain unit vectors,

O'i(t) =€;- Ae,- (14)

is an alternate form of (11). The e; have the same di-
rection as the special solutions x; throughout the time
interval, differing from them only in magnitude.

Now, assemble the e;(t) vectors by columns into the
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matrix £(t). The matrix analog of (13) is easily found to
be

E=AE - EJ(t), (15)

where J(t) is the diagonal matrix whose entries are the
o;(t). This is a relationship which is very familiar from
time-periodic systems.

We wish to use the e;(t) vectors as the coordinate vec-
tors for describing the solution to the variational equa-
tions. To this end, define new coordinates y on the tan-
gent space as

x(t) = E(D)y (1), (16)

Since £(t) is a nonsingular matrix function of time, at
least for to < t < ty, all stability information resides
within the y variables. [We know that the £ matrix is
nonsingular, since the x;(t) are assumed distinct on our
finite time interval.] Again differentiating (16) and sub-
stituting into the variational equations (2) we have

y = {8‘1A£ - 5“15’} y. (17)
But using (15), this easily reduces to

y =J(t)y. (18)

So, this transformation takes the variational equations
(2), and replaces them with a set of decoupled, time-
dependent coefficient differential equations for the vari-
ables y, and another set of linear equations (15) for the
coordinate vectors e(t). We will refer to y as the modal
variables for the system, and £(t) as the modal matrix.
This is the general case of the modal transformation im-
plicit in Floquet theory for time-periodic systems, and
used by Calico and Wiesel for feedback control of peri-
odic orbits.

[We note here parenthetically that the choice o; = A;
also leads to another viable decoupling. Equations (15),
(16), and (18) are unchanged, except that J is now the
diagonal matrix of the constant regional Lyapunov ex-
ponents, so (18) represents a set of constant coefficient
differential equations. However, the variation in the lo-
cal Lyapunov exponents makes this choice, in the opinion
of the author, far less desirable.]

We have applied this technique to the Lorenz attractor,
[12], as modified by Shinbrot, Ott, Grebogi, and Yorke
[13] to include a control input. The system of differential
equations is

T = U(y - :E)v

§=—wz 4o —y+ult), (19)

zZ=zy — bz.
The parameter values we have used are o = 16, v = 40,
b = 4, while u(t) is the control input. For u(t) = 0 this
system has the well known “butterfly” attractor. For all
the cases considered in this paper, the base line trajectory
begins at ¢ = 2.426 881355528, y = 2.577 259040 064,
z = 26.68970066784. This point on the attractor was
found by a long numerical integration of an arbitrary set
of initial conditions. The Lyapunov exponents for this
system as t — oo have been calculated by Shimada and

FIG. 1. The tangent space of the reference trajectory in
modal variables. The plotted region spans |y;| < 0.001 dis-
tance units in the modal space. At the core of the figure a
perfect saddle point appears, while trajectories at the edge
exhibit nonlinear behavior.

Nagashima [14], and are \; oo = 1.37, 0, —22.37.

Decoupling begins by integrating the system state
and variational equations in parallel, and examining the
eigenvalues and vectors of ®T®. For this system, the
complete spectrum of regional Lyapunov exponents is
only well determined for time intervals ty — ¢ty =~ 0.5
time units, using double precision arithmetic. This is
due to the fact that the smallest exponent, according
to (9), is decreasing like pz = exp[—44(t; — to)], and
the eigenvalue package cannot accurately compute it for
large final times. However, at t; —to = 0.5 we believe we
have an accurate set of regional exponents, with values
A; = 2.0489, —0.6365, —22.4123. This trajectory arc
is long enough that the regional exponents are beginning
to approach their final values. The propagation of the
modal matrix over this interval using (15) was then per-
formed. A strong check is that the final modal matrix
E(ty) is very accurately orthonormal. This check is also
reminiscent of the periodic case, where the modal matrix
must be periodic.

With the modal matrix constructed, trajectories on the
tangent space can be examined. This was done by inte-
grating the reference trajectory Xo(t), a nearby trajec-
tory X(t), and the modal matrix £ all in parallel. Then
local modal variables were calculated from

y =Ex ~ £V [X(t) — Xo(t)]. (20)

The results are shown in Fig. 1 as a stereo pair. The y;
axis is the unstable manifold of the system, while the y,
and ys axes are stable. The success of the modal trans-
formation is shown by the appearance of a perfect saddle
point near the origin in modal coordinates. The local
character of this transformation is emphasized by the
behavior of trajectories near the boundary of the plot-
ted region, which is limited to |y;| < 0.001 dimensionless
units.

IV. MODAL FEEDBACK CONTROL

A linear dynamical system which is subject to a control
system is usually written as
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x = Ax + Bu, (21)

where u is the vector of control variables, and the matrix
B apportions the control to the physical states which can
be influenced. For example, in a particle dynamics prob-
lem, only the momentum states can be directly influenced
by applying control forces. The coordinates are not sub-
ject to direct control. Introducing the modal variables,
(21) becomes

y =Jy + £ 'Bu, (22)
={J+ £ 'BG}y,

the second line assuming that the control is the product
of a gain matriz G with the modal state, u = Gy.

As a very important special case, consider a situation
where only one Lyapunov exponent A; is greater than
zero, and the control u is a scalar. Then we may take
G = g a scalar, while £7'B = ¢(t), a vector function of
time. [To produce this function, it is not necessary to
invert £ at each time step. Differentiating £~1€ = I and
substituting from (15) produces

deg-1_ _g-14 +JETL (23)
dt

Since £(tp) is an orthonormal matrix, its inverse is its
transpose at ¢ = to.] To stabilize the trajectory against
small displacements, the positive Lyapunov exponent
must be changed into a negative one, without altering
the stability characteristics of the other exponents. But
under these conditions, the system (22) becomes

oy +cg 0 0 ... 0
Ca29g g2 0 .. 0

}.’ = Cc3g 0 g3 ... 0 Y. (24)
CNg 0 0 .. on

Consider first the unstable mode y;, which now has an
equation of motion

Y1 = [01(t) + c1(t)g(t)] 31 (25)

Since c; is certainly a function of time, and the gain g
could be, this has solution

1 (£) = v (to) exp { / o () + ex(r)g(r)] dr} . (26)

0

Now, write c1g = (c1g9) + A(t), where {c1g) is the average
over the entire time interval

! / ’ c1(r)g(r)dr. (27)

c1g9) =
(c19) A

Similarly, write o1 (t) = A1 + €1(t), where €;(t) represents
the (not necessarily small) deviation of the instantaneous
exponential rate o; from its average value over the time
interval. Then the solution for y;, (26), becomes

Y1(t) = y1(to) exp {(A1 + (c19)) (t — t0)}

t
X exp { / [en(r) + A()] dr} . (28)

to
Now, the integral of €; (t) + A(t) over the interval ¢p <t <
ts is zero, so it is clear that the new regional Lyapunov
exponent for this interval, for the “closed loop state,” is
just

1=A1+(c19)- (29)

If we chose to use a constant feedback gain g, this can
be solved for the gain as a function of the desired new
exponent

9= =) /(a)- (30)

In control theory, such a relationship is termed a control
law. If the average value (c;) # O (this is termed a con-
trollability condition) then a gain g exists which will give
any desired closed loop Lyapunov exponent. If (¢;) = 0,
one may still attempt to find a g(t) which produces a
nonzero value in (27).

Now, the closed loop equations of motion for the other
states become

% = 0i(t)yi + ci(t) gy (t)- (31)

Regarding y; as a known function of time, and expo-
nentially decaying assuming that we have chosen \| to
be negative, this is a variable coefficient linear equation
with a time dependent forcing function. Its solution is
found by elementary methods as

¥i(t) = yi(to) exp {/tt O'i(T)d’T}

(]

+ /tt exp {/: Ui(¢)d¢} ci(t)gyi(r)dr.  (32)

0

By inspection, the homogeneous part is exponentially
changing with the original exponential rate. The con-
volution integral above we will refer to as the zero state
solution y; zs(t), since it is the solution to (31) with zero
initial condition.

In the case of time-periodic systems, Calico and
Wiesel, this was sufficient to ensure complete pole place-
ment. But in the general case, the presence of the zero
state portion of the solution may change the other Lya-
punov exponents. Figures 2 and 3 were computed for
the Lorenz system with ¢y = 0.25 and t; = 0.5, respec-
tively, and show the closed loop Lyapunov exponents as
a function of gain g. In the first figure, the uncontrolled
exponents are about \; = 8.897, —2.1762, -—27.721.
Some of these are not especially close to their t; = oo
values. The Lyapunov exponents for the closed loop sys-
tem were calculated from

x=[A+Bg(£71),] %, (33)

where (£71!); is the first row of £71. This form of
the closed loop problem is found by converting back to
the physical variables. This is a time dependent linear
system, and its Lyapunov exponents can be extracted
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FIG. 2. Constant gain feedback for a final time t; = 0.25.
The Lyapunov exponents fairly closely follow the predicted
straight lines, except near the root crossover.

through the techniques in the preceding section. Con-
stant gain control does fairly well in the region plotted,
but in the region where A; and A cross, the roots di-
verge from the desired straight line dependence. A more
extreme case is given in Fig. 3, where the hoped for
linear relation is obeyed for only very small gain values.
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FIG. 3. Constant gain feedback for a final time t; = 0.5 in
the Lorenz system. Only very small gains follow the hoped-for
linear relation.

There is no contradiction with Eq. (30), however, since
that relation refers to the exponential growth rate along
the original e;(t) vectors. The presence of the zero state
solutions for large enough gain values totally changes the
orientation of the Lyapunov ellipsoid, and the closed loop
Lyapunov exponents are quite different from the desired
values.

This is a disappointment, since in the periodic coeffi-
cient case a constant gain is virtually always sufficient to
ensure pole placement. However, there is still consider-
able freedom at our disposal if we consider the gain to be
a function of time. All the results of this section [with the
exception of (30)] are still correct in this case. For ease
of calculation, consider writing the gain as a polynomial
in time

N-1
o)=Y gilt—to), (34)
=0

which is, of course, also a Taylor’s series. We propose
to determine the coefficients by imposing the conditions
that

ty
! / cr(r)g(r)dr = N, — A, (35)
tf-to to

and that the solution to (31) with y;(¢9) = 0, the zero
state solutions y; zs, should be zero at the final time.
This reduces (32) at the final time to just

i(ts) = wilto) exp { / ’ a,-(T)dT}

0

= yi(to) exp {Ai(ts — to)} . (36)

In other words, to ensure that only A; is changed, the
zero state solutions must vanish at the final time. The
remaining homogeneous solution is then just the original
uncontrolled response, at least at the end of the interval.

To meet these N conditions in an Nth order system,
we only need a polynomial of degree N — 1. The coef-
ficients have been calculated by a gradient method, and
convergence was found to be quite rapid. The program si-
multaneously integrates the Lorenz system, the £ matrix,
the three separation conditions, and their linearization
matrix. Results are shown in Figs. 4 and 5 as a func-
tion of the desired shift in the first Lyapunov exponent,
A1 — A}. It is apparent that this method is successful in
moving A; while leaving the other Lyapunov exponents
unchanged. What is not apparent from the figures is how
successful: in double precision arithmetic, the desired ex-
ponents were usually obtained to seven or eight signifi-
cant figures. As earlier, the closed loop system response
was calculated by integrating the fundamental matrix ®
for the closed loop linear system (33), with the calcu-
lated gain function over the interval, and obtaining the
eigenvalues of ®7®.

Our pole placement technique is quite special, in that
the system is left in diagonalized form at ¢t = ty. This
means that the modal matrix for the closed loop system
&' is the same as the modal matrix for the original system
at the initial and final times . The separation conditions
imposed to find the gain function g(t) force this to be true
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FIG. 4. Polynomial gain feedback with a final time
t; = 0.25. The closed loop system Lyapunov exponents have

the expected form: the controlled root moves, while the others
remain in their original positions.

at the final time, while it is trivially true at the initial

time, since the control has yet to be applied at the initial

instant. Figure 6 shows the closed loop Lorenz system

for a final time t; = 0.5, with a gain function moving the

formerly unstable Lyapunov exponent to A} = —2.9511,

while leaving the other roots at —0.6365, —22.4123, re-
=)

i

-20
!
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1 1

FIG. 5. Polynomial gain feedback for a final time t; = 0.5.
Again, the expected linear behavior occurs.

z
3

FIG. 6. Stereo plot of trajectories on the tangent space,
projected along the modal vectors e} of the closed loop sys-
tem. All three axes are now attracting, although some oscil-
lations are apparent.

spectively. It is shown projected onto the z axes, the
modal axes for the closed loop system. Again, the plot
is limited to |z;| < 0.001, and 2; is the formerly unsta-
ble axis. Trajectories converge along all three directions
towards the origin (e.g., the reference trajectory). Some
oscillation along the z; axis is apparent, but after a slight
outward movement all trajectories reverse direction and
approach the origin. This emphasizes that we have not
produced a constant coefficient separated system (18),
but a time dependent modal system. It is only the final,
average exponential rates which have been prescribed.

We have discussed the problem of changing one Lya-
punov exponent while leaving the others unchanged.
This is not as special a case as it may appear at first
glance. With a gain chosen to move A;, Eq. (33) be-
comes a time dependent linear system of the original form
(2). Once the first Lyapunov exponent is adjusted, the
closed loop system can be rediagonalized, introducing
new modal variables z. Rediagonalization is necessary
since the old e; vectors only diagonalize the closed loop
system at the initial and final times. But, as discussed
above, the new and old modal matrices agree at the ini-
tial and final times. Since it is a linear system, additional
control terms can be added to the system, and another
Lyapunov exponent can be selected for control. This
technique has been applied with fair success to several
time-periodic problems, e.g., Webb, Calico, and Wiesel
[15]. While there is no theoretical limit to the number of
Lyapunov exponents which can be controlled in this fash-
ion, we have noted a slow loss of significant figures when
controlling multiple modes in time-periodic systems. It
is expected that this will be the case for the general case
solved in this paper.

It is not necessary to use a polynomial to express the
gain function g¢(t), although this is also a Taylor’s se-
ries, and the times we have been able to handle in the
Lorenz system are quite short. Other basis functions may
suggest themselves in other problems. By retaining ad-
ditional terms in the Taylor’s series, the freedom may
be gained to do optimal control. For example, one may
minimize the mean square control amplitude
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(9(t) = — / " ¢ (r)dr, (37)

ty —to to

subject to the separation conditions as constraints:
(c19) = X — A1, wizs(ty) =0. (38)

This type of problem is usually solved with Lagrange mul-
tipliers, as in Sec. II. The definition of what is “optimal”
will vary greatly from problem to problem, however. For
example, minimizing

lg|" = sup |g(t)| (39)
to<t<ts

on the interval (to, ty) would produce a minimum am-
plitude control in the Chebyshev sense, rather than the
least squares sense. We intend to report on some further
examples shortly.

V. DISCUSSION AND CONCLUSIONS

In this paper it has been demonstrated that the tan-
gent space of any dynamical system can be decoupled into
“normal modes,” locally noninteracting subspaces. Solu-
tions on each modal vector expand or contract exponen-
tially with a Lyapunov exponent particular to that mode.
A pole placement technique which changes one Lyapunov
exponent by a prescribed amount, while leaving all oth-
ers at their original values, has been derived. Iteration
of this technique should make it possible to determinis-
tically change more than one Lyapunov exponent.

The technique is limited to finite arcs of trajectory,
because the regional Lyapunov exponents are obtained
from the eigenvalues of ®T®. However, longer periods of
time could be handled by simply analyzing another arc
beginning where the first arc ends, and changing vari-
ables at the splicing time. If each arc is long enough to
let the regional Lyapunov exponents approach their ther-
modynamic values, the mismatch in the modal matrices
£ should not be too severe.
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